
AD-A144 219 SOLVING TRANSPORTATION PROBLEMS VIA AGGREGATION(U) i/l
GEORGIA INST OF TECH ATLANTA PRODUCTION AND
DISTRIBUTION RESEARCH CENTER R W TAYLOR ET AL. JUL 84

UNCLASSIFIED PDRC-84-i8 N00014-83-K-8i47 F/G 12/1 NL

I lhlhhhhhhhhhlEIIIIIIIIIIIIIu
lull..-

P I

U.6.

11111L1025 11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

017

~~A.

SOLVIG TRNSPOTATIN PRBLEM

VIA AGGEGATIO

a. .Shttt

-#L E

SOLVNDTAUPCTTION ROLEM

DISTIABUGEGTION RSAC

C.AN S. Shttyt

PRODCTIO andon

0 *30@VQIA INSTITUTE OF TECHNLOGY

A:UNT:OFEz: N:: ESIYSSNIEor. * RO4114
ATAT, 1100U 02

PDRC Report Series 84-10

July 1984

SOLVING TRANSPORTATION PROBLEMS
VIA AGGREGATION

by"

4

Richard W. Taylort

C. M. Shettytt

PDRC 84-10

DTIC
E L - TE~

School of Business AdministrationA

t~ichrdRi.Tayl rd 01984dr

University of Evansville
Evansville, Indiana 47702A

ttSchool of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332.

This york was supported in part by the Office of Naval Research under
Contract No. N00014-83-K-0147. Reproduction is permitted in whole or in part
for any purpose of the U. S. Government.

9~bX1. aep -

jue'at'ha. e.it

Evasvile Indiana o770 IA~

Contract~ ~ ~ ~ ~ ~ ~ ~ ~~ ~c UoaOO48--17 Rpouto spritein whol or pr
for ny prpos of he U S. overment

Abstract

Solving Transportation Problems Via Aggregation 0

Richard W. Taylor
School of Business Administration

University of Evansville
Evansville, IN 47702

C. M. Shetty
The School of Industrial and Systems Engineering

The Georgia Institute of Technology .-
Atlanta, Georgia 30332

_)This paper deals with the solution of large scale transportation

problems by aggregation as a special case of constraint and variable

aggregation in linear programming. Using cluster analysis, an

appropriate form of aggregation will be used. If the bounds developed at . -

this point are not tight enough, a suitable unaggregation step will be

specified. Computational results are presented.

Accssfi For

I4TIS GRA&1

PTI TAB

Q r;Aer

Special

Key Words: Aggregation methods, transportation problems, large scale
problems

p

.1

1. Introduction

This paper deals with a practical strategy for solving large0

transportation problems. Even with the present day computers,

transportation problems can be encountered that are too large to

solve practicably. Further, in many instances a more cost-effective A0

standpoint might be to seek only approximate solutions to these problems.

Currently strategies are available to solve large problems by taking

advantage of the special structure of transportation problems. The

proposed algorithm utilizes these strategies while also providing a means

of reducing the total problem size. The application of aggregate

programming to the transportation problem seems a natural one as it is

intuitively appealing to aggregate sources or destinations that have

other similar characteristics.

The main thrust of the proposed strategy is the aggregation of

constraints and/or variables to form a related transportation problem.

This problem is used as a starting point for a sequence of problems, each

more restrictive than the preceding. Bounds on the optimal solution of-

the original problem at each stage are also computed. At each stage, we

address the question of which constraints/variables we would like to

aggregate/unaggregate in order to expedite moving towards an acceptable

solution.

The general approach of aggregate programming has been widely

applied in many areas of practical research, such as economics [7],

input/output analysis (1,3,6,8], and production planning [4]. See [141

for an extended survey and references. Unfortunately, little theoretical

insight is available in these areas.

2

2. Related Work

The classical transportation problem can be stated as

MNM
(TP) Min E E cijxj. (1)

i-l J-1

N
s.t. E x a i-1,2,...,M (2)-I j

• -

Mp
E x b 4 J-l,2,...,N (3)

i=l J • .

i-i-
xi ; 0 for each i~j

M N ,
where without loss of generality, we assume that E a, E b Let x

i-1 j-1 J*

be the optimal solution with z the optimal value at this point.

An important aspect to consider when solving transportation problems

by aggregate programming is that the aggregate programs also be

transportation problems so as to take advantage of the special structure

in transportation problems.

We will first consider the case of aggregating destinations (see

Figure 1). Later we will consider the consequences of concurrent

aggregation of sources and destinations.

The general areas of study in aggregate progremaing as applied to

the transportation problem can be separated into three sections:

1) Selection of the destinations to aggregate,

2) Derivation of bound information on x and z based on the

o

3

solution of the aggregate transportation problem, and finally

3) Reformulation of the aggregate program if 2) does not provide an

adequate solution.

For brevity, we hereon refer to the above areas as aggregate developmentA

modl aeqac4,and problem reformulation,.

In the literature, there has been little work done on developing the

initial aggregate program. Most of the research assumes some prior

knowledge of hov the problem is to be partitioned. They assume that the

destinations to be combined are known. Furthermore, frequently the

actual aggregations are made with equal weightings. Balas [2] proposes

that aggregation may be-applied to all origins (destinations) that are

"neighbouring" based on the values of the c Is. The definition of

neighbouring is intentionally left vague as his emphasis is on the scale

of aggregation. In this respect, he concludes with an intuitively argued

best initial aggregate program size. Although his suggestion is more

appropriate for his particular algorithm, his thoughts on certain

tradeoffs is applicable to the level of aggregation in any scenario.

Zipkin [201 and Geoffrion [9] both suggest that the area of cluster

analysis might be useful in developing the initial aggregate program. In

this respect, we will adopt specific clustering techniques that are both

efficient and adequate for our purposes.

Now suppose the aggregate program has been developed and solved to

a a
yield a solution point xc with associated value z . Zipkin [20] and

Geoffrion [9] have developed upper and lover bounds for the original

problem solution value z using the aggregate program solution. These A

bounds will be slightly extended for use in our proposed procedure.

4

Further, a theoretical groundwork will be laid for further tightening of

these bounds. This extension will utilize a method of marginal analysis .

similarly used by Mendelssohn [17] and Kallio [12].

Finally, a recent paper by Huberman 110] has captured some of the

above bounds in a single cohesive format. Also adaptations of some of

the earlier bounds have been made to the multicommodity network and

generalized transportation problem by Evans [5].

In many instances, the above described bounds are not adequate and a

new aggregate problem is formulated in an attempt to attain tighter

bounds. Zipkin [20] suggests a possible method whereby aggregate terms

are separated into two new aggregate terms in the subsequent problem.

Our proposal will present a variation on this suggestion that has

provided lower computation times in preliminary testing.

Finally, Balas [2) provides a method for aggregating transportation

models and then successively solving these modified problems as a

solution procedure. His emphasis is placed on achieving optimal

solutions and as our procedure will suggest, a tradeoff exists between

increased accuracy of the solution and computation time. No computation

times are given by Balas. Lee [15] extended Balas' work to the general

minimum cost network flow problem. These methods, as well as the general

relaxation solution strategies, are used in part in this study.

3. Development of the Procedure

For the moment we will only consider the case of aggregation of

destinations; later we will address the issue of concurrent source and

destination aggregation. Recall that the proposed approach consists of

.t'.. .--

5

1) aggregate problem development; 2) model adequacy; and 3) problem

reformulation. These are discussed in detail below. 0

3.1 Development of the Initial Aggregate Program

To develop an initial aggregate transportation problem we must

decide first, which destinations to aggregate and secondly, with what

weightages they should be aggregated. As in Figure 1, let us first

consider a general aggregation of original destinations JEP into ar
single aggregate destination r. This corresponds to aggregating each of
the demands b for JeP into a demand b • Additionally, the flows from

r r

each of the sources into these destinations can be aggregated for all

JEP. In particular, aggregation of the demands b corresponds to the

aggregation of the constraints in Eqn. (3) for Jer with multipliersr

t -1,2,...,N. Aggregation of the flows from each of the sources into the

destinations JEP r corresponds to the aggregation of M'sets of variables

xij , Jdr with multipliers si. These constraint and variable

aggregations can be performed for all sets Pr' r-l,2,...,L to give a

general aggregated transportation problem (TP-CV) as follows:

M L
(TP-CV) Min E E E s ijcijxir (4)

II r 1 JcP r iji0

L
s.t. sijir a i i-,2,...,M (5)

r-Il j EP

-2 . - - - - . • i . - :? . ._ " i .0

6

DESTINATION

SOURCE DmnVariable Aggregation Dmn

of Flows xj

Supply JE for each ib

Constraint Aggregation
of Demand b. jc~p

.J r*
x ~where P jr

iJ

a a

is sb i

bJI

7

E t ES ij'ir - E t b rin,2,...,L (6)
rP ilE

8j Xi 0 for each i,j,r (7)

As stated earlier, it is desirable that the aggregate program be a

transportation problem. Let us view what conditions are required to put

the program (TP-CV) in the farm of an H-source, L-destination

transportation problem as shown below:

(ATP) a Min E E c ir xir (8)
i1l r-l

L
s-t. E x ir -a 1 i12..M(9)

r-l

xirc b r l,..L (10)

X ir)0 for each i,r (11)

Comparing Eqn. 5 with Eqn. 9 and Eqs. 7 with Eqn. 11, we must have3

E s -j 1 for each i; si j 0 for each i,j (12)

Also from Eqn. 6 and Eqn. 10, and setting the aggregate demand br equal

to the sum of the demands, we have

8

E t b E bj br for each r (13)
ii E P i jE
r . r

S

Again froa Eqn. 6 and Eqn. 10 we will need

E tjs 1 for each i,r (14)
r

If the conditions of Eqns. 12, 13, and 14 are met then the program

(TP-CV) will be a transportation problem. It is easy to see that there

are an infinite number of multipliers tj and sij that will satisfy these

requirements. For example, let t =l for each J and then any convex
J

combination of the sij's JePr will work. Later in this section we will

specifically address the issue of the multipliers to be used in our

algorithm. We first address which destinations should be clustered

together.

It should be apparent that if we are to preserve the specialized

structure, then aggregation of the demand constraints will also define

an aggregation of the flows. Thus if we aggregate demand constraints for

JEPr, we must similarly aggregate the variables xij JcPr for each i.

Conversely, the partitioning of the flows will also determine the

partitions for the demand constraints. In this light, we can discuss

either the aggregation of the primal demand constraints or the dual flow

constraints (corresponding to the primal variables).

4L To determine the constraints to aggregate, a previus study [181 L

suggested the angle between the normals as a primary measure of

"closeness" of constraints, and the closeness of the right-hand-side

values as a secondary measure. In the case of the transportation _ -

F-0..

9

problem, it is not difficult to show that in both the primal and the dual

problems, the angles between all pairs of constraints are close. Hence,

for a given pair of destinations q and k, we want to find the closeness

of the vectors cq and ck which are the right-hand-sides of the dual

constraints. However comparing this for all pairs can be computationally O

inefficient. Hence, we will compare each vector with an "average vector

w defined by

1 (c1+c2+ .. +cN)

by computing the angle between cj and w given by:

h- c I -hj n O Ic. Hw H-

Then if L partitions (clusters) are desired, it seems desirable to

define angles 0 • eI • e2 (,•••, 4 eL_1 4 180, and let

Cluster P1
= (J : 0 h e 1)

Cluster P2 (J: e, < h1 (e2)

Cluster PL = (j: eL-l < h < 180)

Of course in the actual partitioning procedure, one does not need to

perform either the cos-l() operation or the common division by 1w H, as

long as the appropriate modifications are made to the ei's. This method

also has the advantage that it is computationally efficient.

S

10

A final topic in the partitioning of the destinations is the

determination of the number of and the values of the ei 's. The ei's are

chosen to uniformly partition the interval [0,180]. As will be more

evident in the reformulation process, it makes sense to require that a

minimum number of destinations be contained in each cluster. For our

purposes, the minimum number was chosen as three destinations (sources)

per cluster which allows for at least two iterations of the

reformulation process.

We developed above a procedure to partition the destinations into L

clusters, Pr r-l,2,...,L, based on variable aggregation of the flows.

In order to retain the specialized structure of the transportation

problem, the above variable aggregation forces a specific constraint

aggregation of the demand constraints as discussed earlier. Thus the

clusters JePr r-l,2,...,L, will also be used to give L aggregate

constraints of the form:

M=E x b r-l, 2,...,L

Xir = E 'r Pb

r

The previous section gives the procedure for the partitioning of the

destinations. The next step in our algorithm is to develop the •

multipliers for combining the associated constraints and variables.

Comparing Eqn. 4 with Eqn. 8, to make the total costs equal, we must

have

cir ij cij
EP.

. ." ".' " - . ..

i 11

Further if t - 1, then xir - Xik* To make the costs associated

with xi equal to the sum of the costs associated with the aggregated

flows, we must have cirxir c cjir j so that

kEP

r

jEcx

cir Z x ik
k EP

Comparing the expressions for c ir we have

ij ,
k EP

Since the flows xij are not available, it seems reasonable to assume that

the flows to the destinations aggregated are likely to be proportional to

the demand so that a good approximation for s will be

b
a - J for each JePr and for each i,r (15)

keP
r

Note that t jl and s defined above satisfy the conditions
j ij

necessary for insuring that the aggregate program is a transportation

problem. As we shall see in the section on bounds, use of these

multipliers will also provide us with an immediate upper bound on z

Incidentally, these multipliers are precisely the pro-rata demand

multipliers used by Zipkin [20] and Geoffrion [9]. __

_0 .. .

12

3.2 Model Adequacy: Bounds

The previous section develops a procedure to form an initial

aggregate transportation problem. In this section, we develop bounds on

the original problem solution from the solution to the aggregate

problem.

Consider the initial aggregate problem (ATP). The problem can be

aasolved to obtain a solution x with solution value z and optimal dual

multipliers (u a,v). Zipkin shows that the solution value za forms an

upper bound on z

Theorem 1 [Zipkin]: Let x solve (TP) with value z * Let (ATP) be the

aggregate program of (TP) formed by the aggregate multipliers

a
8 in Eqn. 15 and t M'l for all J. Let x solve (ATP) with

value z a Then

z < z-

In order to obtain feasible points to (TP) it is necessary to

adisaggregate the solution x (size MLxl) to a vector of size MNxl. Two

methods of disaggregation are discussed in [191. The first and simplest

to use is fixed weight disaggregation. We can obtain a feasible solution 0 --

fto (TP) by disaggregating a - Exa] as follows:

f ajXi for each JP for each r and for each ixiJ si r r'

where sij are the pro-rata demand multipliers from Eqn. 15. Hence an

upper bound on z will be as follows: 3

13

H N
z 4 z f "E E c f

i - J- i J. i=i=

f -

An important issue to note is that a feasible solution x can be found by

this method regardless of the multipliers a ij used to form the initial -

aggregate program. A consequence of using sij to form the initial

aggregate program is that z a - zf

A second alternative is to use the method of optimal disaggregation
p

as discussed by Balas [2] and Zipkin [19]. This method entails solving a

transportation problem for each cluster Pr r1,2,...,L in order to

produce optimal flows within each cluster. Thus solving the following

programs for each r1l,2,...,L:

rz Min E E c x "--i-l jE P

s.t. x a i-l,2,...,M
j EP xij ir

M

Z xij b for each JcPr

xi)) 0 for each i, for each JcPr

L
we will' get a feasible solution to (TP) with solution value z - E zr .

r-l

Zipkin also shows that the upper bound formed by the optimal

disaggregation procedure is at least as good as the fixed weight

disaggregated solution value. The optimal disaggregation procedure does

14

however require coisiderably more computation time, as a transportation

problem must be solved for each aggregate cluster. These two 0

alternatives were computationally tested to determine the conditions

which favours each method. Preliminary results indicate that the optimal

disaggregation method is Most effective at the later stages when the S

bound obtained is close to the desired accuracy. In these cases, the

expense of the additional computation time of solving these sub-

transportation problems is offset by achieving sufficient additional ,

accuracy.

We now proceed to develop a lower bound on z * Let (u,v) be a set

of dual variables with components

a aui - ui and vj = r for JePr and r 1 l,2,...,L.

when u. and va are the optimal dual multipliers to (ATP). Let (d,d) be

an arbitrary direction. Then

Z E (v +d j)b + E - Nui£ i)a£ [(v +e) + (u +di) - c Ixij

The first two terms are the dual objective function value at (u,v) +

e(dd) and the last term is a penalty for violating the dual constraints.
N M M

Noting -br E bk, za , E v b + E u ai, and E xj bj, we have

k j-l i-l ii J

dN iM N M
z- za + 0(E bd + E ad) Z E [(v +)J-1 b J i-1 J-1 i-l

15

+ (us + eld) - cijxijx

N N N
z + 8(E bjd + E adi)- E max[(v + lea

i i J i-iil 1

+ (u + edi) - ctj]b

Zipkin (20] derives the same bounds using a relaxation procedure when

0 - 0.

However for each destination J, we are allocating the full demand

M •
-Sx = b to the particular term corresponding to max [(v +) +

i-l i -

(ua + edi) - cij. If however we reallocate the total amount b to
j-'.-

specific indices i so that an allocation for any cell (i,j) will be no

greater than min (ai,b) then a better bound on z is available. Thus if

[(vj + Od) + (ui + edl) - ctj] are in descending order, we have

a N M M N -
z >z a + e(N bjd + E ad) E [(v + ed)

J-i i- i- J-1

i-1
+ (ua + edi) - cijl max(O,min(ai,b4 - E a]}i i j8S1 S

Hereinafter the right hand side of the above expression will be

denoted as z(O) which is stronger than the bound derive'd earlier. Both

methods of bounding were incorporated into the full algorithm and it was A.

found that both methods required less than 1% of the total time to solve

0 _

16

the problem. However in a preliminary comparison of the accuracy of the

resulting bounds, it was found that out of 40 observations, the proposed

lower bound was on the average 16.8% (standard deviation 4.3%) better

than Zpkin's bounds.

The above discussion clarifies the lower bound to be used in our P

proposed algorithm is stated precisely in Theorem 2 below.

Theorem 2 Let x solve (TP) with value z . Let (ATP) be the aggregate

program of (TP). Let xa solve (ATP) with value za and optimal

a a ' adual multipliers (uava). Let v - vr for each JcPr for each

a
r. Let the terms [(vj + ej) + (ut + ed) - cij] be reordered

over the index i to form a nonincreasing sequence. Let

N + M N
Z(O)-za + e(E b d + E aid)- E E (v +J - 1 J . i- i -l J -l J 0-_ . .

+ (u + ed) ct 4j max(Omintaib - Z aa

Let e = argmax z(0). Then z(e) 4 z.

Theorem 2 above gives a general lower bound. However, in order to --

use the bound it will be necessary to specify a direction of search and a

line search method. First let us look at the function z(0). As

discussed in (17] and [181, the function z(0) will be piecewise linear

and convex with breakpoints e as defined below
ii

0

17

e -i - fi or each i,j ,
dl 0

Note that even for a relatively small transportation problem, there are a

large number (KxN) of breakpoints. Clearly it is important that as few
*

of these-breakpoints be used as possible in finding 8 . Certainly the

bounds produced by the line search for bounding will be at least as good

as when 0-0. However additional computation time will be required for

the line search. In order to provide preliminary testing of the

algorithm, the computational runs will only use the value 8-0. This

assignment also eliminates determination of the specific directions d and .

at this stage.

Recall that the bound in Theorem 2 was formed by allocating the

M
demand E x - b to particular cells i, i-l,...,M. A similar bound

i-l J

could have been formed by allocating the supply E xE j = a, to

particular cells j JIl,...,N. This procedure would yield a lower bound

Z'(0) of

N M M N A

Z'(e) z za + (b d + E ai) - E E [(vj + d) --
J-l 1 il i- J-1

J-1
+ (ua +) - c1j] max {O,min [bj, ai - bi + sin_

S

18

In the limited problems tested, both bounds were relatively close to each

other. As discussed earlier, the time to compute these bounds is a small 0

fraction of the entire solution time hence it seems reasonable to compute

both of these bounds at each iteration. Then the maximum of these two

bounds can be used as the best lower bound. Incidentally, Zipkin [20] .0

also shows these parallel sets of bounds for his particular bound

formulation. His testing also does not provide any insight into the

conditions of when one approach provides a better bound than the a
alternative. We should note that these same bounds are also derived by

Geoffrion [9] and Huberman [10], although by a different approach.

By the combination of Theorems 1 and 2 we have the following bounds

on the optimal solution of the original problem

P * a
z ~z 4z.

where

z max {z(0), z'(0))

If the bounds above are adequate then we can stop. If not, then it

is desirable to form a new aggregate problem that will provide tighter

bounds than those described above. For this purpose we define in general

the lower bound as zr and the upper bound as zu, where at this stage of

the algorithm zr - z and zu - za . It is convenient to measure the error

at this stage by an error bound level defined by

zu - Zr

Zr

19

Reformulation of the Aggregate Problem

In many Instances the bounds provided by the aggregate program may

be satisfactory. If not, a method of reformulation is adopted to tighten

the available bounds.* This process will be accomplished by unaggregating

one of the destinations from each aggregate cluster.

Several reformulation methods are discussed in the literature.

Zipkin [201 presents a rather broad algorithm that contains numerous

possibilities for the regrouping of aggregate nodes. His main suggestion

is to divide each constraint cluster into constraints that are violated

at the current solution and those constraints that are not violated at

the current solution. This alternative is eliminated since in

preliminary testing, the size of the aggregate programs and hence the

computational ef fort in solving the subsequent aggregate programs grows

more rapidly than the accuracy of the bounds. Zipkin offers additional-

possibilities where some but not all of the clusters might be

reformulated or that some other criteria other than the violation of the

constraints might be used. 0

Bals [2] uses another reformulation algorithm, namely once a

cluster has been identified that contains a violated constraint, then

all of the destinations in that cluster are unaggregated in the

subsequent program. This method has a similar drawback to Zipkin's

method in that the size of the aggregate problem quickly aproaches the

order of the original problem. However, Bals' method is focused

towards solving the original problem to optimality without consideration

of any resource constraints that may limit the size problem solvable. An

additional point is that Bals' method uses different aggregate methods

to obtain his initial aggregate program, hence his reformulation scheme0

7 7
•7...

p

20

is partially based on this particular aggregation. We eliminate the
So

strategy of constructing an entirely new initial aggregate program as

requiring considerable effort without guaranteeing that the bounds at

subsequent stages will prove to be any better than the ones already at

hand.

The proposed method is to unaggregate only the "most violated

destination" in each cluster, which seems to yield a favorable tradeoff

between increase in the aggregate problem size and decrease in the error P

bound level. To do this, we unaggregate the destination j within each

cluster Pr that has the most violated constraint, i.e., the unaggregated

destination Jr in cluster Pr is defined as

-r c Zr" [u + vk - CIO ; [ui + v cij for each J-r and

[u+ vj -c > 0) (16)

This method also has the advantage that the values [u+v j-cij] are

readily available as they represent the levels of violation in the error

bound z(O). Further, the aggregate multipliers s can be easily updated

in the subsequent program, where the multipliers in aggregate destination-f .
b

r will be sij9 b -) for JcP, J'r'* Thus given an aggregate program,
r

we can construct a scheme that produces a reformulated aggregate program

as follow:

1. For each cluster Pr' unaggregate destination j as defined in

Eqn. 16 to form two new clusters () and (JEP r j*j) Do for
4L

. L

21

all r-l,2,...,L.

2. Reaggregate using the clusters in step 1.

The above procedure describes the method of reformulating the

initial aggregate program into a subsequent aggregate programs. The

subsequent programs are based on the preceding programs, hence the

updating from one program to the next is minimal. Further, at iteration

k, we can construct bounds for the program ATP(k) using Theorem 1 to

yield an upper bound z (k) and Theorem 2 to yield a lower bound z (k)

a

Since the program ATP(k+l) is a restriction of the preceding program

ATP(k), we have: -- 4

(k)(kM klTheorem 3 Let x solve ATP(k) with value z Let ATP~ k 1l be the

reformulated program of ATP(k). 'Let x(k+l) solve ATP(k+l)a

with value z (k+l) Then z(k) > z(k+l)
a a a

Since every iteration yields a better upper bound than the previous,

then at iteration k we can define the current best upper bound z u, as

z(k)Za

In a similar manner for every aggregate program ATP (k) we can derive

a lower bound z (k) . Unfortunately, the lower bounds are not necessarily
P

monotonically increasing. Mowever, if we define the lower bound z ras.

the maximum of all the lower bounds, i.e. as

zr max[z P z ,..z }

AL-Jk_

0

22

then the error bound level of

.0
z -z

ii r

Zr

will be nonincreasing at every iteration. In
practice, it is generally •

strictly decreasing, as the conditions yielding otherwise are rare.

In summary, given an initial aggregate program, it can be

reformulated by unaggregating particular violated constraints in selected 0

clusters to form a subsequent aggregate program that is still a

transportation problem. The bounds formed from the subsequent programs

are successively tighter and thus the algorithm can be continued until P

adequate bounds are attained.

Note that the above method of reformulating the aggregate problems

will result in a sequence of aggregate solutions z
(k), that vi converge

to the optimal solution value of (TP) in a finite number of iterations.

This is so, since at each stage the number of destinations in ATP(k)

increases by at least one, hence in at most N - L steps (where L was the .

number of aggregate destinations in ATP(1)), the initial problem will be

at hand.

Extension to Source Aggregation

For the most part, the above methods have been illustrated for the

case of only destination aggregation. However the principles are

identical for source aggregation. Joint source and destination

aggregation is simply the combination of the separate source aggregation

and destination aggregation. Again, the principles can be easily

. ...- ".

23

extended. As we have seen, destination aggregation produces an aggregate

problem that is a restriction of (TP). Source aggregation simply further

restricts the problem. Thus the solution to a joint aggregated problem

still yields an upper bound on z • Also, the proposed lower bounds can

be easily generalized to this case.

In a recent paper, Zipkin and Raimer [211 present an alternative

method of disaggregation which preserves integrality of the solution. No

comparison is provided, however, with the bound obtained by the optimal

disaggregation method.

4. Computational Results and Discussion

One of the main objectives of the research was to provide an

algorithm that would initially form a good aggregate program, utilize the

information contained therein to generate bounds on the original problem

solution and, if need be, to reformulate the aggregate problem into a yet

better aggregate problem with tighter bounds. Within these objectives

lies the necessity to generate an algorithm that is efficient, or at

least comparable in computation time to solving the original problem.

Second, it is desirable that the algorithm should contain the

capabilities to solve problems larger than the available transportation

code can handle. Finally, the bounds developed on the optimal values p

should be reasonably tight.

Implementation of the Algorithm

The proposed algoritl was implemented in its entirety on the CDC 3

CYBER 170/730 mainframe operating under the NOS 1.4 operating system. All

control programs to run the various programs were written in a procedural

machine language basic to the CYBER mainframe. The transportation code p

a-

24

TPGO used to solve both the original and aggregate problems is by

McGinnis [16]. The code utilizes a tree representation for the basis and

is reasonably efficient. The program is written in Fortran IV.

All algorithms to develop the initial aggregate programs and

reformulate the subsequent aggregate programs were written in APL 2.1014.

This allows for efficient handling of the problem's data structures.

Generation of Test Problems

The transportation problems were randomly generated from a uniform

[0,11 distribution of values. Randomly generated demands and supplies

were scaled to the range [5,50] with one dummy demand set up to balance

supply and demand. Geoffrion [91 shows that a sufficient condition for

an error bound level of zero (i.e. zu - z) occurs when the cost c can

be written in a factored form, i.e. cij = qib1 for each ij. If the

destinations are close and similar in the type of detand, then the qi's

may represent a cost/unit-mile. With this thought in mind, the costs

were generated by cij = qib + rij where qic[40,50 and the parameter

r ij[-l00,100] to produce some randomness.

Experimental Design

The problems tested were divided into two categories: medium size

problems (30 sources, 30 destinations); and large problems (100 sources,

100 destinations). The size 100xlO0 was chosen as a reasonable extension

over the medium size of 30x30. The initial cluster size was chosen as

3x3 for the 30x30 problems and 5x5 for the lOOxlOO problems. These sizes

were chosen based on preliminary results experienced in the aggregation

a-

25

of general linear programs (see [181). Finally, all test problems were

subjected to both destination and source aggregation. 0

Computational Results

The first set of problems tested were those problems in the range of

30x30. These problems were evaluated using the proposed methodology and

the computation times compared with the time to solve the original

problem. The problems were run on a CDC CYBER 760/140. For the five

test problems generated, the results using both TPGO and the proposed

method are given in Table 1. The table provides the error bound level

and computation time (cpu-seconds) at each iteration for the five test

problems. The average time to solve these problems to optimality by TPGO

was 0.796 cpu-seconds. In this same time, the proposed method produced

aproximate solutions with an average error bound level of 9.0%. Although -
0

the times to solve the problems using the aggregate method are slightly

higher, the orders of magnitudes of the solution times are comparable.

The second set of problems tested were for those transportation

probems with 100 sources and 100 destinations. These problems used an

initial aggregate program size of five destinations and five sources.

These programs were also run on a CDC CYBER 760/140. The results of

these runs are shown in Table 2. The solution times for TPGO are again

comparable to the times for using the proposed algorithm to an error

bound level of 10%. It is clear that the algorithm can fully handle

large type problems, as the largest aggregate transportation problems

that was solved by the proposed method was a 32 source by 38 destintion

transportation problem.

S

3-_

26

5. Conclusions,

The main objective of the research was to provide a practical tool

to solve large transportation problems through the enhancement of the

computer's capabilities. The computational results show that aggregate

programming can be used on problems larger than currently solvable on a

particular system. Further, the proposed bounds produce tighter bounds

than previously available. A procedure is developed to reformulate the

aggregate problem and thus produce tighter bounds at each subsequent

iteration. This strategy may provide a more cost effective approach to

solving certain transportation problems.

27

Table 1

Computation Time for Proposed Algorithm and TPGO

Problem Number
Iteration #1 #2 #3 #4 #5

a a a a a -

b b b b b

1 .136 .136 .135 .135 .138
20.4 17.4 29.2 30.2 34.2

2 .218 .219 .215 .213 .218
17.5 17.1 18.1 24.9 20.2

3 .338 .403* .325 .301 .332
13.1 14.2 15.0 16.7 15.2

4 .494 .610* .556* .537* .595*
10.9 13.0 12.3 9.6 13.9

5 .795* .863* .840* .850*

9.6 12.2 10.0 7.4

6 1.001* -

8.3 p

Time to
Solution .772 .922 .711 .763 .812
by TPGO

*with optimal disaggregation

a Computation time (cpus)
b Error bound level (Z)

Remarks: All problems run on a CDC CYBER 760/140.

4, _

28

Table 2

Computation Times for Large Problems (lOx100) •

Problem Number
Iteration #1 #2 #3

a a a "

b b b •

1 .234 .221 .242
21.7 54.7 47.2

2 .359 .381 .371
21.1 49.3 28.6

3 .505 .537 .512
20.4 37.4 21.2

4 .682 .712 .699
18.7 25.2 19.3 I

5 1.051* .924 1.062*
11.7 18.3 10.6

6 1.201* 1.257* 1.216* -

9.9 8.2 10.2

Time to
Solution 1.194 1.186 1.203
by TPGO

*wth optimal disaggregation

a Computation time (cpus)
b Error bound level (X)

Remarks: All problems run on a CDC CYBER 760/140 .

9-

29

REFERENCES

1. Arm, K., "The Aggregation Problem in Input-Output Analysis," 0
Econometrica, 27: 257-262 (1959).

2. Balms, E., "Solution of Large-Scale Transportation Problems through
Aggregation," Operation Research, 13: 82-93 (1965).

3. Blin, J. M. and Cohen, C., "Technological Similarity and Aggregation 0
in Input-Output Systems: A Cluster-Analytic Approach," The Review
of Economics and Statistics, 59: 82-91 (1977).

4. Day, R., "On Aggregating Linear Programming Aodels of Production,"
Journal of Farm Economics, 45: 797-813 (1963).

5. Evans, F., "Aggregation in Generalized Transportation Problem,"
Computers and Operations Research, 6: 199-204 (1979).

6. Fei, J. C. H., "A Fundamental Theorem for the Aggregation Problem in
Input-Output Analysis," Econometrica 24: 400-412 (1956).

7. Fisher, W. D., Clustering and Aggregation in Economics, Baltimore:
Johns Hopkins University Press (1969).

8. Fisher, W. D., "Criteria for Aggregation in Input-Output Analysis,"
The Review of Economic and Statistics, 40: 250-260 (1958).

9. Geoffrion, A. M., "Customer Aggregation in Distribution Modeling,"
Working Paper 259, Management Science Study Center, UCLA (1976).

10. Huberman, G., "Error Bounds for the Aggregated Convex Programuing
Problem," Math Programing, 26: 100-108 (1983).

11. Ijiri, Y., "Fundamental Queries in Aggregation Theory," Journal of
the American Statistical Association, 56: 766-782 (1971).

12. Kallio, M., "Computing Bounds for the Optimal Value in Linear
Programming," NRLQ 24: 301-308 (1977).

13. Kuhn, H. W. and D. E. Cullen, "Aggregation in Network Models for P..
Transportation Planning," Mathematica, Princeton, N. J. (prepared
for U. S. Department of Transportation)(1975).

14. Lansdowne, Z. F., "Survey of Research on Model Aggregation and
Simplification," Technical Report SOL 79-26, Department of
Operations Research, Stanford University (1979).

15. Lee, G., Surrogate Programing Through Aggregation, Ph.D.
Dissertation, UCLA (1975).

S. - -.

30

16. McGinnis, L. F., Report 103, North Carolina State University (1975).

17. Mendelssohn, R., "Improved Bounds for Aggregated Linear Programs,"
Operations Research, 28, 1450-1453 (1980). P

18. Taylor, R. W., "Aggregate Programing in Large Scale Linear
Systems," Ph.D. Dissertation, Georgia Institute of Technology
(1983).

19. Zipkin, P. H., "Aggregation in Linear Programming," Ph.D. .
Dissertation, School of Organization and Management, Yale University
(1977).

20. Zipkin, P., "Bounds for Aggregating Nodes in Network Problems,"
Mathematical Programming, 19: 155-177 (1980).

21. Zipkin, P. and Ralmer, K., "An Improved Disaggregation Method for
Transportation Problems," Mathematical Programming, 26: 238-242
(1983).

£I

4L

4L

4L

9t 4

17 i

e40

Is0

IRA

